

國立臺灣大學電機資訊學院資訊工程學研究所	

碩士論文	

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master's Thesis

基於可滿足性模組理論之實數平面多智能體協同安全定位	

Cooperative and Secure Multi-Agent Positioning

on Real Coordinates Based on Satisfiability Modulo Theories

賈本晧	

Ben-Hau Chia

指導教授：林忠緯	博士	

Advisor: Chung-Wei Lin, Ph.D.

 中華民國 112 年 7 月	

July 2023

ii

Acknowledgements

I would like to express my deepest appreciation to Professor Chung-Wei Lin,

who has provided invaluable expertise with immense patience. I have cultivated

a positive attitude and learned how to conduct research responsibly. I also could

not have been part of this academic journey without Professor Wenchao Li, who

generously offered professional suggestions and feedback.

My gratitude extends to all of lab members as well, for their help in proof-

reading, editing, and moral support.

Lastly, I would like to mention my family and friends. Their unconditional

support and faith in me have kept my motivation high throughout my pursuit for a

Master’s Degree.

Ben-Hau Chia

National Taiwan University

July 2023

iii

基於可滿⾜性模組理論

之實數平面多智能體協同安全定位

研究⽣：賈本晧 指導教授：林忠緯 博⼠

國立臺灣⼤學資訊⼯程學研究所

摘要

多智能體系統 (multi-agent system) 基於各智能體之間的溝通並合⼒解決問題，

如智慧交通系統中的各項運輸⼯具，軍事系統中的各種軍事設備，機器⼈系統

中的自主機器⼈等，這些智能體們在各系統中藉由合作達到單⼀智能體無法完

成的任務。其中，定位在多智能體系統中是舉⾜輕重的⼯作之⼀，例如自駕車

需要精準定位來達到自動駕駛。本論⽂考慮互聯多智能體系統的協同安全定

位，並解決兩項主要問題：每個智能體有各自的定位誤差，且系統中存在刻意

散佈錯誤資訊的攻擊者。針對以上問題，本論⽂基於可滿⾜性模組理論設計了

建構性⽅法及破壞性⽅法，兩種⽅法皆嘗試使各智能體達成定位上的共識，並

同時確認攻擊者存在之有無。實驗結果顯示，相較於⼀基準⽅法，建構性⽅法

能提升攻擊者辨識的準確度，⽽破壞性⽅法可以加速取得定位共識所需時間。

關鍵詞：協同定位、多智能體系統、安全定位系統、可滿⾜性模組理論

iv

COOPERATIVE AND SECURE MULTI-AGENT
POSITIONING ON REAL COORDINATES BASED ON

SATISFIABILITY MODULO THEORIES

Student: Ben-Hau Chia Advisor: Dr. Chung-Wei Lin

Department of Computer Science and Information Engineering
National Taiwan University

Abstract

Multi-agent systems are an emerging technology with a promising future,

and positioning is a fundamental task supporting applications of multi-agent sys-

tems, with vehicles needing precise positioning to perform autonomous driving as

a prime example. In this thesis, we consider cooperative positioning for connected

multi-agent systems. In particular, we address the two following challenges: Each

agent has its own positioning errors, and malicious agents within the group inten-

tionally provide false information. Based on Satisfiability Modulo Theories (SMT),

we design two approaches, a constructive approach and a destructive approach, to

reach a positioning consensus among the agents and identify the set of potential

attackers. Experimental results demonstrate that the proposed approaches improve

the consensus accuracy and speed up the consensus process, respectively, compared

with a baseline approach.

Keywords: Cooperative Positioning, Multi-Agent System, Secure Posi-

tioning System, Satisfiability Modulo Theories

v

Table of Contents

Acceptance Certificate ii

Acknowledgements iii

Abstract (Chinese) iv

Abstract v

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1

1.1 Related Work . 2

1.1.1 Global Positioning System (GPS) 2

1.1.2 Non-Satellite Based Positioning . 3

1.1.3 Cooperative Positioning . 3

1.1.4 Simultaneous Localization and Mapping (SLAM) 3

1.1.5 Vehicular Networking and Its Security 4

1.1.6 Mobile Ad-hoc Networks (MANETs) 5

1.1.7 Vehicular Ad-hoc Networks (VANETs) 5

1.2 Background: Satisfiability Modulo Theories 5

1.3 Contributions . 7

1.4 Thesis Organization . 7

Chapter 2. System Model and Problem Formulation 8

2.1 Elements . 10

2.2 Positioning . 11

vi

2.3 Observation . 11

2.4 Attacking Strategies . 13

2.5 SMT Formulation . 16

Chapter 3. Proposed Approaches 20

3.1 Broadcast Protocols . 20

3.2 System Flow . 21

3.3 Constructive Approach . 22

3.4 Destructive Approach . 24

Chapter 4. Experimental Results 28

4.1 Experimental Setting . 28

4.1.1 Basic Setting . 28

4.1.2 Broadcast Positions Sampling . 29

4.1.3 Attacker Generation . 29

4.1.4 Baseline Approach . 29

4.1.5 Evaluation Metrics . 30

4.2 Experiments without Attackers . 31

4.3 Experiments with Attackers . 32

4.3.1 Different Number of Attackers and Different Da 32

4.3.2 Different T . 33

4.3.3 Different M and N . 34

4.4 Discussion . 35

Chapter 5. Conclusions 38

Bibliography 39

Appendix 44

vii

List of Tables

2.1 Notations throughout this thesis. 9

4.1 Average of Euclidean distances between each agent’s solved solution
and real position. 31

5.1 Experimental results with different numbers of attackers and different
numbers of observers Da (Mean & STD in seconds; the others in
percentages). 44

5.2 Experimental results with different T (Mean & STD in seconds; the
others in percentages). 45

5.3 Experimental results with different M and N (Mean & STD in sec-
onds; the others in percentages). 46

viii

List of Figures

2.1 (a) An agent on the map is a square with a side length equal to S, and
the position of an agent is the coordinate of its central point. (b) An
agent can observe the other agents with a 4-directional line-of-sight
observation. In this example, α0’s real position is (x0, y0). α0 can
observe α2 along the east side, and therefore F0,east = [2]. Similarly,
F0,north = [4, 3], F0,west = [7, 6, 5], and F0,south = ∅. 12

3.1 Two broadcasting protocols. (a) Protocol 1 and (b) Protocol 2. . . . 21

3.2 Two approaches. (a) Constructive approach and (b) Destructive ap-
proach. 22

4.1 Experimental results with different numbers of attackers and Da. . . . 32

4.2 Experimental results with different T 33

4.3 Experimental results with different (M,N). 34

4.4 An example illustrates a map with 5 agents, where α0 is the only
attacker. An arrow between two agents indicates that those agents
observe each other. (a) The real positions of all agents. (b) The
broadcast positions of all agents. 35

4.5 A result when two attackers exist and (M,N, T, oa) = (20, 10, 100, 2).
(a) Number of constraints in the SMT solver in each round. (b) Solv-
ing time in each round. The lines for the baseline and destructive
approaches overlap in (a) and (b). The difference between these ap-
proaches lies in identifying potential attackers after the SMT solver
returns unsatisfiability. 36

ix

Chapter 1

Introduction

Multi-agent systems are composed of multiple intelligent and interactive

agents, providing a way for agents to communicate and collaborate. Numerous

multi-agent system applications, such as autonomous driving, military defense, in-

trusion detection, healthcare monitoring, and emergency services have been pro-

posed. An intelligent transport system (ITS) is a representative application of multi-

agent systems as we view each transportation as an agent, having great potential to

improve traffic efficiency and reduce accidents with the application of sensing, com-

munication, analysis, and control. Vehicular ad-hoc network (VANET), based on

the architecture of mobile ad-hoc networks (MANET), is one of the crucial compo-

nents in ITS, utilizing various vehicles or transportation facilities as communication

nodes, which can be applied to emergency event warnings, traffic flow control, etc.

Accurately locating each agent is pivotal in multi-agent systems [22]. The

Global Positioning System (GPS) is one of the most common approaches for agents

to position themselves, but GPS has its limitation in accuracy which is affected

by the surrounding environment. Multi-agent systems can work cooperatively to

perform positioning, improving the corresponding accuracy and responsiveness for

all agents and even other objects in the surrounding environment. The most repre-

1

2

sentative applications include simultaneous localization and mapping (SLAM) and

dynamic mapping for autonomous driving. However, malicious attacks within the

group can intentionally provide false information and undermine the overall po-

sitioning systems. In this thesis, we target cooperative positioning for connected

multi-agent systems with the existence of positioning errors and malicious attack-

ers.

This thesis extends a previous study [10] that addressed the problem on

a grid-based map with at most one attacker and proposed approaches based on

Satisfiability Modulo Theories (SMT). However, it has its limitations, since real-

world maps cannot always be divided into grids, and there is no guarantee of having

only one attacker. In this thesis, we address the problem on a real coordinate map

with one or multiple attackers, which is closer to reality.

1.1 Related Work

1.1.1 Global Positioning System (GPS)

Numerous approaches have been proposed to localize agents in different sce-

narios and environments, and GPS is one of the most common approaches. However,

its provided accuracy is only to the scale of meters, which is not enough for cer-

tain cases of multi-agent systems, such as multi-agent formation. An approach that

integrates GPS for agent localization has been proposed in [4]. Further improve-

ment for accuracy has been done by fusing the observation from received signal

strength (RSS) and carrier frequency offset (CFO) into GPS with the help of neural

networks [17].

3

1.1.2 Non-Satellite Based Positioning

However, environmental factors, such as satellite-signal occlusion, multi-

paths, crowded urban settings, and other non-line-of-sight factors, can severely

undermine the efficacy of GPS. Therefore, many non-satellite based positioning

methods, such as radio frequency based positioning and visual navigation, have

been developed, including time of arrival, time difference of arrival, and angle of

arrival, etc. Extensive research on ultra-wideband transmission technology has also

been done [8], exploiting the low-energy and high-bandwidth communication char-

acteristics.

1.1.3 Cooperative Positioning

In the meantime, compared with conventional approaches that require ev-

ery agent to communicate with an anchor node, agents in cooperative positioning

gradually help each other determine their own positions. This results in a lower

number of anchor nodes and increased performance in terms of both accuracy and

coverage. We point the readers to [31] for a comprehensive analysis on cooperative

positioning. A Bayesian method for distributed sequential positioning of mobile net-

works composed of both cooperative agents and non-cooperative objects can also be

found [20]. A provably coordinated attack detection algorithm at the graph level is

also proposed in [30].

1.1.4 Simultaneous Localization and Mapping (SLAM)

A technique that has been receiving significant interest is SLAM [2] for au-

tonomous driving. In this case, agents are vehicles detecting other vehicles based

on camera [6], lidar [5], or radar [9]. As expected, it is ideal to have different vehi-

cles working collaboratively to solve the localization and mapping problem. [25,33]

4

are early collaborative visual SLAM frameworks supporting independently moving

cameras, and [13, 27] further restrict each agent taking limited key frames. Note

that all the above systems have centralized architectures, i.e., a server collects the

key frame images from agents to compute the local map for each agent. However,

there can be adversarial attacks on visual SLAM. [3] presented a method to cre-

ate universal adversarial image patches attacking on general deep learning models,

and [11] showed that the ORB-SLAM [21] can be corrupted when the environment

is modified by replicating a simple high textured patch.

1.1.5 Vehicular Networking and Its Security

As mentioned in [12], vehicular networking and/or connected vehicles can

be used to support active road safety applications as well as other information

exchanges. The goals are to decrease the probability of traffic accidents, reduce the

loss of lives, and increase traffic efficiency. Object localization and positioning in

dynamic maps which are provided to vehicles via vehicular networking is an essential

function for the realization of autonomous driving. However, security is also a

concern for vehicular networking, and [14,29] have a brief introduction on the threats

that vehicular networking faces, including authentication, integrity, confidentiality,

etc. Apart from authenticating the legitimacy of each vehicle, numerous ways to

detect malicious vehicles have also been proposed. [15] detects malicious vehicles by

evaluating the reliability of neighboring vehicles based on the observed difference,

and various trust-based security algorithms for vehicular networking have also been

analyzed [28].

5

1.1.6 Mobile Ad-hoc Networks (MANETs)

MANETs consist of nodes that form a self-figuring and self-healing network

and have shown great potential in providing solutions for various situations. These

networks do not rely on fixed topology or require pre-existing information and com-

munications technology (ICT) infrastructure. We refer the readers to the refer-

ences [24, 26] for details.

1.1.7 Vehicular Ad-hoc Networks (VANETs)

Established on MANETs’ architectures, VANETs are an emerging technology

with great potential in providing more efficient and safer traffic, but they are more

challenging because of unpredictable dynamic topologies with safety concerns. [32]

introduced methods for detecting Sybil attacks by analyzing signal strength. [1]

has proposed an operating system for the 5G-based VANETs with software-defined

network (SDN) and self-organizing map (SOM) incorporated. A trust-based frame-

work for distributed denial-of-service attack (DDoS) detection has also been de-

veloped in [23]. For readers who are unfamiliar with VANETs, we refer to the

references [16,18].

1.2 Background: Satisfiability Modulo Theories

In this thesis, we utilize the Satisfiability Modulo Theories (SMT) solver

as a tool to address our problem. The Boolean satisfiability problem (SAT) is to

determine if there exists an interpretation that satisfies a given Boolean formula, and

SMT generalizes the SAT problem with more complex formulas (e.g., lists, arrays,

bit vectors, strings). To make our problem and approaches compatible with existing

SMT solvers, we transform all the constraints into first-order logic formulas and

solve the problem using SMT solvers. The SMT solvers also provide the flexibility

6

to add extra constraints and remove useless constraints during the solving process.

This feature enables us to design our approaches and iteratively utilize the SMT

solvers, adjusting the constraints as needed.

An SMT solver checks whether a set of first-order logic formulas can be sat-

isfied with respect to several background theories and returns the results according

to the satisfiability of those formulas. An SMT solver checks whether a set of first-

order logic formulas can be satisfied with respect to several background theories and

returns the results according to the satisfiability of those formulas. An SMT solver

has two possible return values, satisfiable and unsatisfiable, indicating the satisfia-

bility of the given formulas. In addition to the satisfiability, the solver can provide

further information. It returns a solution if it determines that the given formulas

are satisfiable. Otherwise, it returns an unsatisfiable core if no solution exists that

satisfies all the formulas simultaneously.

An unsatisfiable core, also known as an unsat core, refers to any subset of

formulas from a given set of formulas that demonstrates the unsatisfiability of the

entire set. An unsat core is minimal if we can make it satisfiable after removing

any formula in the given formula set, and it is minimum if it has the least number

of formulas among all minimal unsat cores. Note that there may be numerous

minimal unsat cores with respect to the same set of formulas. It is also important

to note that an SMT solver can return a minimal unsat core but not a minimum one.

Nevertheless, this property allows us to focus on the critical formulas responsible

for the unsatisfiability, aiding in the analysis and the process of discovering the

attackers.

7

1.3 Contributions

Our contributions are summarized as follows:

• We address the challenges on a real coordinate map that each agent has its

own positioning errors, and one or multiple malicious attackers intentionally

provide false information.

• Based on SMT, we design two approaches: the constructive approach, and

the destructive approach. They try to reach a positioning consensus between

agents and find the set of potential attackers.

• Experimental results demonstrate that the constructive approach and the de-

structive approach improve the consensus accuracy and speed up the consensus

process, respectively, compared with a baseline approach.

1.4 Thesis Organization

The rest of the thesis is organized as follows. We introduce the formulation

of the problem in Chapter 2, present the proposed approaches in Chapter 3, describe

the experimental results in Chapter 4, and draw conclusions in Chapter 5.

Chapter 2

System Model and Problem Formulation

In this chapter, we scrutinize the problem. We first introduce the elements of the

problem in Section 2.1. Section 2.2 and Section 2.3 describe positions and obser-

vations made by agents in detail, respectively. Section 2.4 discusses the attacking

strategies an attacker can adopt. Last, the formulation for the SMT solver is intro-

duced in Section 2.5. The notations throughout this thesis are listed in Table 2.1.

8

9

Table 2.1: Notations throughout this thesis.

Coordinates, Indices, Direction
x, y the coordinates

i, i′, i′′ the index of an agent
a the index of an attacker
t the index of a broadcast position
d the direction (north, east, south, or west)

Agents
αi the i-th agent
αa the attacker (also an agent)

Given Parameters
M the side length of the map
N the number of agents
S the size of each agent

Rt
i = (X t

i , Y
t
i) the t-th broadcast position of αi

E the error shift
Fi,d the observation of αi along direction d
Oi the observation of αi

T maximum round
Given Sets

Ri the set of all broadcast positions of αi

Rt the set of the t-th broadcast positions of all agents
R the set of all broadcast positions of all agents
O the set of all observations

Decision Variables
(Xi, Yi) the position variables for αi

A the set of potential attackers
Others

(xi, yi) the real position for αi

10

2.1 Elements

The system model has the following elements:

• Map. We consider the problem on an M ×M real coordinate map, which can

be viewed as a coordinate system. The coordinates of each point are defined

as (x, y), with (0, 0) in the bottom-left corner.

• Agent. We assume that an agent is a square with a side length of S, and

there is an aggregate of N agents on the map. Each agent αi owns a unique

integer ID i, where 0 ≤ i < N . αi is located on (xi, yi), where both xi and yi

are static. In the system, all agents are capable of broadcasting their positions

and observations to others. We will further introduce the positioning and

observations in Section 2.2 and Section 2.3.

• Attacker. An attacker is also an agent in the system. We assume that there

are one or multiple attackers in the system. The objective of the attackers

is to confuse the other agents by broadcasting wrong information, including

false positions and observations. The behavior and attacking strategies of the

attackers will be detailed in Section 2.4.

• Solution. A solution includes a feasible position for each agent on the map.

We utilize the SMT solver to derive solutions.

• Goal. The goal is to reach a consensus among all agents. The consensus is

either one of the following outcomes: there is no solution, or there exists at

least one solution. If there is no solution, it implies that there are attackers in

the system, and the goal also includes deriving the set of potential (possible)

attackers A.

11

2.2 Positioning

Each agent uses its sensors such as GPS to position itself. The t-th sensed

(and then broadcast) position of αi is denoted as Rt
i = (X t

i , Y
t
i). The set of all

broadcast positions of αi is denoted as Ri, and the set of all agents’ t-th broadcast

positions is denoted as Rt. Furthermore, the set of all broadcast positions of all

agents is denoted as R. Due to errors and limitations of GPS, there exist discrep-

ancies between αi’s real position (xi, yi) and sensed positions (X t
i , Y

t
i). We assume

that there is a bounded value of the error between the real position and every sensed

position along each axis, which we refer to as error shift, denoted as E.

It should be mentioned that, when there is an error shift, it is possible that

an agent always broadcasts its position with an error, so the goal in this thesis is

to find possible positions (solutions) for each agent, not to find the real position for

each agent.

2.3 Observation

Each agent utilizes its sensors (e.g., cameras, radars, lidars) to observe the

environment on the map. Numerous observations can be designed and implemented

by an agent, for example, distance measurement, object detection, and object iden-

tification. The more observations an agent makes, the more information (as con-

straints) we can consider during the solving process. In this thesis, we consider a

“line-of-sight” observation, where each agent checks four directions, including north,

east, south, and west. An agent is able to observe all agents along each direction.

We assume that there is no error with the observations of an agent, but an agent

does not measure the distance between itself and the observed agents. We denote

the observation of αi along direction d as Fi,d, where d is north, east, south or west:

12

(𝑥!, 𝑦!)

𝑆

𝑆

: Agent

: Line of sight

𝛼!

𝛼"
𝛼#

𝛼$𝛼%
𝛼&

𝛼'

𝛼(

(a) (b)

𝛼)

N

Figure 2.1: (a) An agent on the map is a square with a side length equal to S,
and the position of an agent is the coordinate of its central point. (b) An agent
can observe the other agents with a 4-directional line-of-sight observation. In this
example, α0’s real position is (x0, y0). α0 can observe α2 along the east side, and
therefore F0,east = [2]. Similarly, F0,north = [4, 3], F0,west = [7, 6, 5], and F0,south = ∅.

• Fi,d = ∅: αi observes no agents along the direction d.

• Fi,d = [id,0, id,1, . . . , id,n−1]: αi observes n agents along the direction d, and they

are αid,0 to αid,n−1
. Moreover, αi broadcasts the observed agents from its left-

hand side to its right-hand side. For example, when observing along the north

side, αi broadcasts the observed agents from the westernmost (left-hand side)

one to the easternmost (right-hand side) one, which are αinorth,0
and αinorth,n−1

,

respectively.

We then denote the observation of αi as Oi, which is an array of length 4,

including the observation of αi along the north, east, south, and west, respectively.

The set of all observations is denoted as O.

Figure 2.1(b) shows an example of the observation of α0. In the example,

α0 observes only α2 along the east direction, so F0,east = [2]. Note that α0 cannot

13

observe α8 since the line of sight for α0 to see it is blocked by α2. α0 also observes

both α3 and α4 along the north side, so F0,north = [4, 3]. Note the order matters,

since we assume that the observed agents are broadcast from the observer’s left-hand

side to its right-hand side. Similarly, we have F0,west = [7, 6, 5]. Last, α0 cannot

observe α1, and therefore F0,south = ∅.

Although the 4-directional line-of-sight observation is applied in this thesis,

there are many various kinds of observations that can be applied. An agent can have

more directions (angles) for line-of-sight observation. An agent can also measure the

distance between itself and an observed agent, using radars for example. It is also

possible that the observations have bounded ranges or errors due to the limitation of

sensors. We can deal with various kinds of observations as long as the observations

can be transformed into first-order logic formulas.

2.4 Attacking Strategies

As mentioned in Section 2.1, we assume that there are one or multiple attack-

ers in the system, and the attackers aim to confuse the other agents by broadcasting

incorrect positions and observations. Attackers may have different motivations for

broadcasting incorrect positions. Here are some of the motivations:

• Evasion of Detection. By claiming a wrong position, an attacker can hide

its real position, which is beneficial if the attacker does not want to be tracked

or identified.

• Misdirection or Diversion. An attacker may intentionally offer wrong po-

sition information to mislead or divert the attention of the system or the other

agents, causing confusion or communication disruption among the agents. For

14

example, man-in-the-middle attacks are one of the attacks that mislead the

agents by broadcasting incorrect messages.

• System Manipulation. An attacker can deceive and further manipulate the

system by providing wrong positions. For example, in a vehicular system, an

attacker can create congestion or occupy the traffic resources (e.g., intersec-

tions) by pretending to be in a wrong location. It can lead to a waste of traffic

resources and even chaos on the road.

• Unauthorized Access. An attacker may gain unauthorized access to enter

restricted areas by broadcasting incorrect positions. For example, it is possi-

ble to deceive a location-based access control system by claiming a different

position.

We have two assumptions for the attackers, and both assumptions make it

easier for the attackers to perform attacks:

• Complete Information. We assume that the attackers have all information

needed to perform attacks, including all agents’ real positions on the map and

the details about system flow, making it easier for the attackers to perform

tricky attacks.

• Outstanding Computational Power. We assume that each attacker owns

powerful computational resources, which allows them to compute the needed

information and derive the best fake position to attack within a short time

period.

The objective of the attackers is to confuse the other agents by broadcasting

wrong positions and observations, in order to obtain personal benefits or cause

15

safety concerns. However, randomly choosing a fake position to broadcast can make

it easier for those good agents to detect the threat and further discover the attackers.

Therefore, good attacking strategies are important for the attackers.

Based on the broadcast positions and observations made by all agents (in-

cluding the attackers), an approach solves the positions for all agents. There are

three kinds of attacking strategies: No Solution attack, One Wrong Solution attack,

and Multiple Solutions attack. All three attacks try to confuse the other agents by

broadcasting false positions. From the perspective of the approach, it knows neither

the number of attackers on the map nor the attacking strategies they choose. We

shall elaborate on these three attack strategies:

• Strategy 1: No Solution. The attacker computes and derives a fake posi-

tion violating some observations made by other agents, causing the approach

unable to find a solution. It should be emphasized that from the approach’s

perspective, it just discovers an inconsistency among the agents. However, it

does not know which agents are the attacker, and thus it cannot solve the

possible positions of all agents at the same time.

• Strategy 2: One Wrong Solution. The attacker computes and derives a

fake position following all observations made by other agents. From the ap-

proach’s perspective, all broadcast positions and observations are consistent.

However, the solved positions for the attackers are different from their real

ones, and thus the real positions of the attackers cannot be solved.

• Strategy 3: Multiple Solutions. The attacker computes and derives a fake

position following all observations made by other agents. From the approach’s

perspective, all broadcast positions and observations are consistent. However,

16

for some agents, there is more than one possible position for each of them, and

thus the real positions of the attackers cannot be solved.

We have three more assumptions here, and these assumptions make the at-

tackers act more like good agents, thus making it more difficult for the approach to

discover them:

• The attackers never broadcast the positions that are outside the map or overlap

with the other agents.

• For each attacker, the fake position it tries to attack is fixed.

• To simulate the errors caused by the sensor such as GPS, the attackers also

broadcast their positions with error shift E involved.

To observe and underline the power of the SMT solver, we assume that all

attackers in the system choose No Solution attack as their attacking strategies.

2.5 SMT Formulation

As mentioned in Section 2.1, the goal is to reach a consensus among all

agents. The consensus is either one of the following outcomes: there is no solution,

or there exists at least one solution. If there is no solution, it implies that there

are attackers in the system, and the goal also includes deriving the set of potential

(possible) attackers A.

We use the SMT solver to derive solutions based on all broadcast positions

and observations. The SMT solvers can be executed in a centralized or distributed

way. If it is executed in a centralized way, there is a centralized unit that collects

all agents’ broadcast positions and observations, executes the SMT solver, solves

17

the problem, and then broadcasts the solution back to all agents. For example, a

centralized unit can be an edge server or a roadside infrastructure for vehicles. If it

is executed in a distributed way, each agent receives all positions and observations

broadcast by the others, executes the SMT solver, and solves the problem.

Given M , N , S, E, R, O, the SMT solver decides the possible position

(Xi, Yi) for each agent αi, while following all the positions and observations broadcast

by all agents. The constraints put into the SMT solver are detailed as follows:

• Validity of Real Positions. The real position of each position is inside the

map, and therefore αi’s real position coordinates are between 0 and M :

∀ i, (0 ≤ Xi ≤M) ∧ (0 ≤ Yi ≤M) . (2.1)

• No Overlap. There is no spatial overlap between agents, otherwise a collision

occurs, and we do not consider the collision cases in this thesis. Therefore, the

following constraint stands:

∀ i, i′, i ̸= i′, (|Xi −Xi′| ≥ S) ∨ (|Yi − Yi′ | ≥ S) . (2.2)

• Consistency of Observations. As mentioned in Section 2.3, we assume that

there is no error with all agents’ observations, and therefore the observations

are consistent with the agents’ real positions. For example, when d is north:

– If i′ ∈ Fi,north, αi observes αi′ along the north side:

∀ i′ ∈ Fi,north, (|Xi −Xi′ | < S) ∧ (Yi < Yi′). (2.3)

18

We can add further constraints between those agents in Fi,north. Assume

there are n agents in Fi,north, which are inorth,0, inorth,1, . . . , inorth,n−1:

∀ k, 0 ≤ k < n− 1, Xinorth,k
< Xinorth,k+1

. (2.4)

We have similar constraints when d is east, south, or west. They are

omitted here.

– If i′ /∈ Fi,north ∪ Fi,east ∪ Fi,south ∪ Fi,west, αi′ is not observed by αi. There

are two possible reasons:

∗ The first possible reason is αi′ is out of αi’s observable range (e.g.,

in Figure 2.1(b), α0 cannot observe α1):

(|Xi −Xi′ | ≥ S) ∧ (|Yi − Yi′| ≥ S) . (2.5)

∗ The second possible reason is that there exists another agent αi′′

which blocks αi to observe αi′(e.g., in Figure 2.1(b), α0 cannot ob-

serve α8 because of α2):

∃i′′ ∈ Fi,north, Yi′ − Yi′′ ≥ S. (2.6)

We have similar constraints when d is east, south, or west. They are

omitted here.

• Bounded Errors. As mentioned in Section 2.2, we assume that there is

a bounded value of the error E between the real position and every sensed

position along each axis:

∀ i, t,
(∣∣X t

i −Xi

∣∣ ≤ E
)
∧
(∣∣Y t

i − Yi

∣∣ ≤ E
)
. (2.7)

19

For the first three types of constraints, we call them “basic constraints”, since

the approach adds them to the assertion list of the SMT solver just once

during the initialization. For the fourth type of constraints (bounded errors),

they are added to the assertion list whenever the approach receives a sensed

position from the sensors or a broadcast position from another agent. Note

that the usage of the fourth type of constraints (bounded errors) also depends

on whether the error shift E is given (known) or not. If the error shift E

is given, the constraints are added to the assertion list as mentioned above;

if the error shift E is not given, we can iteratively add the constraint with

different values of E in Equation 2.7 into the assertion list of the SMT solver

and analyze the satisfiability outcome. We assume that E is given for the

remaining part of the thesis.

Chapter 3

Proposed Approaches

In this chapter, we introduce the proposed approaches. Section 3.1 defines the

broadcast protocols first, and Section 3.2 describes the system flow. Subsequently,

we present two proposed approaches, the constructive approach and the destructive

approach, in Section 3.3 and Section 3.4, respectively.

3.1 Broadcast Protocols

A broadcasting protocol describes the broadcasting behavior of all agents,

including the feasible time for an agent to broadcast its sensed position and the

solving time for the SMT solver [10]. There are two reasonable settings:

• Protocol 1. As shown in Figure 3.1(a), the SMT solver starts solving the

SMT formulation as long as all agents broadcast their positions at least once.

• Protocol 2. As shown in Figure 3.1(b), there is a time interval, and all agents

continuously broadcast their positions until the end of the time interval. The

SMT solver starts solving after the end of the time interval.

From the perspective of the SMT solver, there is not too much difference as the two

protocols only create different numbers of constraints of bounded errors. However,

from the perspective of the attacker, Protocol 1 has more limitations as the system

20

21

i i' i'' i ii' i'' i' i''

Start
Solving

Start
Solving

Start
Solving

Start
Solving

Start
Solving

i i' i i'i i i' i' i''i i

(a)

(b)

Time Interval Time Interval

Figure 3.1: Two broadcasting protocols. (a) Protocol 1 and (b) Protocol 2.

can ask each agent to broadcast its position and observation once all the other

agents do so. With Protocol 2, the attackers can keep silent, continuously collect

information from all the other agents, decide their best strategies, and broadcast

their information near the end of the time interval. In the following thesis, we use

Protocol 1 as a better defending strategy, although Protocol 2 can still be applied

to the SMT formulation and the SMT solver.

3.2 System Flow

Figure 3.2 demonstrates the system flows of two proposed approaches. Our

approaches utilize the SMT solver as the solving tool, which holds an assertion list

as a container and adds various types of constraints, presented as logical formulas,

into the assertion list. The basic constraints, defined in Section 2.5, are added to

the assertion list during initialization. The fourth constraint (bounded errors), also

defined in Section 2.5, is added to the assertion list after the broadcast positions

are received. Two approaches assume all agents to be good agents initially. The

22

Start Add Basic
Constraints

Collect and Add Rt
Except

Potential Attackers

Meet Stop
Criteria Satisfiable

End

Return Results
Update Candidate

Solver With UNSAT
Core

Candidate Solver
Suggests Candidates

Remove Constraints
Related To
Candidates

Check

Record The
Candidates

j⟵ 0 No

No

j⟵ j + 1Yes j⟵ 0

Yes Yes
No

Start Add Basic
Constraints Collect and Add RtMeet Stop

Criteria Satisfiable

Record Agents With
True Relaxation

Variables

Return Results

Increase Upper
Bound

j⟵ 0 No No

j⟵ j + 1Yes j⟵ 0

Yes

End

(a)

(b)

Figure 3.2: Two approaches. (a) Constructive approach and (b) Destructive ap-
proach.

system will return the results when the SMT solver continuously returns satisfiable

for T times. There are two possible outputs for the system when meeting the stop

criteria. If there are no possible attackers found, it outputs all agents’ positions.

Otherwise, the system outputs the set of potential attackers A.

3.3 Constructive Approach

See Algorithm 1. The notations and the descriptions in Algorithm 1 fol-

low [19]. We call it “constructive” since the number of “assumed” potential at-

tackers increases during the system flow as if it is constructed. In the constructive

approach, we add relaxation variables (Line 5) to all constraints. A relaxation vari-

able ri is added to a given constraint if the constraint is related to αi. For example,

to restrict α0 to be inside the map (Equation 2.1), the constraint we put into the

23

Algorithm 1: Constructive Approach

Data: M,N, S,E,R, O, T
Result: Solved Positions P or Potential Attackers A

1 begin
2 (C,A, j, t, ub)← (∅, ∅, 0, 0, 0)
3 add basic constraints to C
4 ∇ ← {ri|ri is the relaxation variable for αi}
5 C∇ ← addRelaxation (C,∇)
6 ⊓ ← CNF (

∑N
i=1 ri ≤ ub)

7 while j < T do
8 C∇ ← C∇ ∪ addRelaxation (Rt,∇)
9 (sat,P ,U)← SMT(C∇ ∪ ⊓)

10 if sat ̸= true then
11 (j, ub)← (0, ub+ 1)

12 ⊓ ← CNF (
∑N

i=1 ri ≤ ub)

13 end
14 (j, t)← (j + 1, t+ 1)

15 end
16 while sat = True do
17 A′ ← getTrue(P,∇)
18 A ← A∪A′

19 C∇ ← C∇ ∪ avoid(A′)
20 (sat,P ,U)← SMT(C∇ ∪ ⊓)
21 end
22 return P ,A
23 end

SMT solver is ((0 ≤ x0 ≤M) ∧ (0 ≤ y0 ≤M)) ∨ (r0 = 1). The constraint suggests

that either α0 is indeed inside the map, or r0 is true, indicating α0 is an attacker.

In the beginning, we assume that there are no attackers in the system. An AtMost

constraint, denoted as ⊓ in Algorithm 1 (Line 6), is added to the assertion list,

asserting no relaxation variables can be assigned true value. The SMT solver in the

constructive approach (Line 9) should find the satisfiability between the constraint

set (c∇) and the AtMost constraint (⊓) at the same time. If the SMT solver returns

unsatisfiability, the system increases the upper bound, denoted as ub in Algorithm 1,

of AtMost constraint (Line 11), since there exist more than ub attackers in the sys-

24

tem, which violates the original AtMost constraint’s assumption. After the SMT

solver continuously returns satisfiable for T times, the approach finds all combina-

tions of the potential attackers (Line 16–21). In the end, the approach returns the

solved positions of all agents P if no potential attacker is found. Otherwise, the set

of potential attackers A is returned (Line 22). Algorithm 1 calls the following key

functions:

• SMT(C) tests the satisfisfiability of a constraint set C. sat is a Boolean variable

assigned true if its constraint set is satisfiable, in which case P contains a

solution (i.e., solved positions of all agents) to C, or assigned value false, in

which case U ⊆ C is an unsatisfiable core.

• addRelaxation(C, ∇) adds relaxation variables after all constraints. For each

constraint c ∈ C, if c is related to an agent αi, we add the corresponding

relaxation variable ri into c, and the new constraint is c ∨ ri.

• avoid(A) returns a constraint for avoiding finding the same combination of

potential attackers as A.

3.4 Destructive Approach

See Algorithm 2. This approach is “destructive” since the potential attackers

are found by removing some agents’ constraints. Inspired by [30], to avoid solving

the combinatorial problem by applying brute force search, the destructive approach

requires another SMT solver, also known as candidate solver (Line 4). When the

main solver returns unsatisfiable (which means the system discovers that there ex-

ist attackers on the map), the system analyzes the unsatisfiable core, updates the

candidate solver with a constraint according to the unsatisfiable core (Line 11), and

25

Algorithm 2: Destructive Approach

Data: M,N, S,E,R, O, T
Result: Solved Positions P or Potential Attackers A

1 begin
2 (C,A, j, t)← (∅, ∅, 0, 0)
3 add basic constraints to C
4 S = candidateSolver()
5 while j < T do
6 C ← rmRelated(C ∪ Rt,A)
7 (sat,P ,U)← SMT(C)
8 if sat ̸= true then
9 (j, ub,A′)← (0, 1, ∅)

10 while A′ = ∅ do
11 update(S,U)
12 B ← getCandidates(S)
13 if B ̸= ∅ then
14 while B ̸= ∅ do
15 C ′ ← rmRelated(C,B)
16 (sat,P ,U)← SMT(C ′)
17 if sat = true then
18 A′ ← A′ ∪ B
19 update(S,B)
20 else
21 update(S,U)
22 end
23 B ← getCandidates(S)
24 end

25 else
26 ub← ub+ 1
27 update(S, ub)
28 end

29 end
30 A = combine (A,A′)

31 end
32 (j, t)← (j + 1, t+ 1)

33 end
34 return P ,A
35 end

26

asks the candidate solver to return a list of possible attacker candidates (Line 12).

We are certain that at least one attacker exists when unsatisfiability occurs, and

there should be some constraints related to the attacker inside the unsatisfiable core.

Given an unsatisfiable core, the system analyzes and derives all agents related to the

core, and adds a corresponding constraint, claiming that at least one attacker exists

among those agents, into the candidate solver. If the candidate solver is unable

to provide a list of candidates, it means that the upper bound for the attackers

is too small. Therefore, we increase the upper bound (Lines 26–27) and ask the

candidate solver to return a list once again. If the candidate solver successfully

returns a list of candidates, the system then removes all the constraints related

to those candidates and makes the main SMT solver check whether the remaining

constraints are satisfiable (Lines 15–16). If the remaining constraints are satisfiable,

it implies that all contradictory constraints (because of the attackers) are removed,

and the system records the candidates as possible attackers (Lines 18–19). On the

other hand, if the remaining constraints are still unsatisfiable, we can infer that

there are some attacker(s) that caused the unsatisfiability but are not included

in the candidate list. The system can further add a corresponding constraint to

the candidate solver in the light of the unsatisfiable core (Line 21), and ask the

candidate solver to generate the next candidates (Line 23). For the “check” part

in Figure 3.2, the system will only record candidates and start the next round if it

encounters unsatisfiability after removing constraints and has already found some

potential attackers. Otherwise, it will continuously update the candidate solver to

find additional potential attackers. In the end, the approach returns the solved

positions of all agents P if no potential attacker is found. Otherwise, the set of

potential attackers A is returned (Line 34). Algorithm 2 calls the following key

functions:

27

• SMT(C) is identical to the one in Algorithm 1.

• rmRelated(C, A) is a function to remove several constraints from the constraint

set C regarding the agents set A. For each constraint c ∈ C, if there exists an

agent α in A such that α is related to c, then c will be removed from C. This

function eventually returns the constraint set after all removals.

• getCandidates(S) asks the candidate solver S to generate an available candi-

date list. It returns an empty list ∅ when there are no available candidates.

• update(S,) updates the candidate solver in three ways based on the second ar-

gument’s type. If the second argument is an unsatisfiable core (update(S,U)),

it indicates that there is at least one attacker which caused the unsatisfia-

bility, and we can add a constraint asserting at least one agent in the core

is an attacker. If the second argument is a set of agents (update(S,A′)), it

implies that A′ is a set of potential attackers, and we add a constraint into

the candidate solver to avoid generating an identical list again. If the second

argument is an upper bound value (update(S, ub)), it means that the upper

bound is so low that the candidate solver cannot generate an available integer,

and therefore we increase the upper bound by one.

• combine(A,B) returns all possible combinations of two lists. For example, if

A = [[1]] and B = [[2], [3]], the output results of combine(A,B) is [[1, 2], [1, 3]].

Chapter 4

Experimental Results

In this chapter, we demonstrate the experiments in detail. We first introduce the

experimental setting in Section 4.1. The results for experiments with no attackers

are presented in Section 4.2, while those with attackers are in Section 4.3. We

discuss and conclude the results in Section 4.4.

4.1 Experimental Setting

We elucidate basic setting, broadcast positions sampling, attacker generation,

and methods to evaluate the performance of the two proposed approaches as follows.

4.1.1 Basic Setting

All experiments are run on a MacBook Pro with Apple M1 Chip and 8

GB LPDDR4 memory. All computations are performed with PYTHON, and we

use Z3 in pySMT [7] package as the SMT solver in both approaches. For each

setting, we randomly generate 100 test cases. The real positions for all agents are

randomly generated during every test case, and observations O of all agents are

further computed based on their real positions. The attackers perform No Solution

attacks throughout all experiments so that we can compare the solving times for A.

The size of each agent S is 1.0, and the error shift E is 1.0 in each experiment.

28

29

4.1.2 Broadcast Positions Sampling

To simulate the error shift in the experiments, we model the error as a Gaus-

sian distribution along both axes, with the mean and the standard deviation equal to

0 and E
3
, respectively. Precisely, let N(µ, σ) be the notation of a Gaussian distribu-

tion, where µ is the mean and σ is the standard deviation. The x-coordinate of αi’s

broadcast position in round t, X t
i , is sampled at the beginning of the round from the

distribution N(xi,
E
3
), and samely, the y-coordinate, Y t

i , is sampled from N(yi,
E
3
).

The system samples an agent’s broadcast position iteratively until it differs from

αi’s actual position by at most E along each axis, as described in Section 2.5.

4.1.3 Attacker Generation

As mentioned in Section 2.4, the attackers own thorough information and

outstanding computational power to derive needed information, including which

fake coordinate to attack. To generate the attack in the following experiments,

we derive the fake position for each attacker trying to attack before the system

flow starts. Since all attackers perform No Solution attacks, for each attacker, we

repeatedly choose a random fake coordinate until it violates other constraints by

using another SMT solver to check. During the experiment, the attacker cheats

its position according to the fake coordinate. Note that the solving times of each

approach do not include finding the fake positions for attackers.

4.1.4 Baseline Approach

We design a straightforward approach for comparing the performance of two

proposed approaches, and we call it the baseline approach. The baseline approach

uses brute force search, assuming that an agent is an attacker one by one and

removing all the constraints related to the agent when the system SMT solver returns

30

unsatisfiability. If the remaining constraints are satisfiable, the system has removed

all the attackers causing the contradiction. The removed agent is considered a

possible attacker, and the system appends it to the set of potential attackers A. If

no possible attackers are found based on the current assumption, the system will

increase the assumed number of potential attackers. For instance, if the system

initially assumes that there is only one attacker but cannot identify any possible

attacker, it will then proceed to assume that there are two attackers.

4.1.5 Evaluation Metrics

When the system finds possible attackers on the map, it returns A in the

end. To evaluate the performance, besides the average and the standard deviation

of solving times for deriving A, we design four additional metrics to assess these

approaches:

• Precision. The precision score of an output is the percentage of agents in A

that are real attackers.

• Recall. The recall score of an output is the percentage of attackers that

appear in A.

• Success. An output is counted as a success only if the real attackers are one

of the combinations in A.

• Ambiguity. If an output is counted as a success, its ambiguity score is the

reciprocal of A’s length.

31

Table 4.1: Average of Euclidean distances between each agent’s solved solution and
real position.

System (M,N)
Flow (10,5) (10,10) (20,10) (10,20) (20,20)

Baseline 0.51 0.50 0.51 0.46 0.49
Constructive 0.51 0.48 0.51 0.41 0.48
Destructive 0.51 0.50 0.51 0.46 0.49

For example, if the real attackers are α0 and α1, and A = {[0, 1], [0, 2]},

which means the system states that either “α0 and α1 are the attackers” or “α0 and

α2 are the attackers”. The precision score of this A is 2
3
, because there are two real

attackers (α0, α1) in A (α0, α1, α2). The recall score of this A is 1, since all real

attackers (α0, α1) are included in A. This A is counted as a success, as the real

attacker combination([0, 1]) is one of those in A, and the ambiguity score is 1
2
.

4.2 Experiments without Attackers

In this section, T = 25 is fixed, and there are no attackers on the map

yet. As mentioned in Section 3.2, the system outputs a solution (i.e., a possible

coordinate for each agent) when there are no potential attackers found. Table 4.1

shows the average of the Euclidean distances between each agent’s real position and

solved position. The results show that there is little difference between the three

approaches and five different map settings, and it is reasonable since the main factor

causing the error between the two positions is the error shift E, which is fixed among

all experiments.

32

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

1 attacker, Da = 0

0

2

4

6

0.0

0.2

0.4

0.6

0.8

1.0
2 attackers, Da = 0

0

2

4

6

0.0

0.2

0.4

0.6

0.8

1.0
3 attackers, Da = 0

0

2

4

6

R
untim

e (second)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

1 attacker, Da = 1

0

2

4

6

0.0

0.2

0.4

0.6

0.8

1.0
2 attackers, Da = 1

0

2

4

6

0.0

0.2

0.4

0.6

0.8

1.0
3 attackers, Da = 1

0

2

4

6

R
untim

e (second)

Baseline Constructive Destructive
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

1 attacker, Da = 2

0

2

4

6

Baseline Constructive Destructive
0.0

0.2

0.4

0.6

0.8

1.0
2 attackers, Da = 2

0

2

4

6

Baseline Constructive Destructive
0.0

0.2

0.4

0.6

0.8

1.0
3 attackers, Da = 2

0

2

4

6

R
untim

e (second)

Precision
Recall
Success
Ambiguity
Runtime

Figure 4.1: Experimental results with different numbers of attackers and Da.

4.3 Experiments with Attackers

4.3.1 Different Number of Attackers and Different Da

Let Da = |{d : F (a, d) ̸= ∅}| be the number of directions that an attacker αa

is observed by others. In this section, (M,N, T) = (20.0, 10, 25) are fixed. Attackers

are randomly chosen among all agents αi, where Di is fixed at a specific number.

Figure 4.1 compares the results of the two proposed approaches and the baseline.

We can observe that the more directions that the attackers are observed by the other

agents, the shorter the solving times and the higher the scores of the results, and

thus it can be seen that having more observations between agents helps the system

find the attackers more efficiently and more accurately. We can also discern that

the average solving times of the constructive approach are longer than those of the

destructive one. Further explanations will be covered in Section 4.4.

33

0.00

0.25

0.50

0.75

1.00

Sc
or

e

T = 5

0

10

20

30

0.00

0.25

0.50

0.75

1.00
T = 10

0

10

20

30

0.00

0.25

0.50

0.75

1.00
T = 25

0

10

20

30

R
untim

e (second)

Baseline Constructive Destructive
0.00

0.25

0.50

0.75

1.00

Sc
or

e

T = 50

0

10

20

30

Baseline Constructive Destructive
0.00

0.25

0.50

0.75

1.00
T = 100

0

10

20

30

R
untim

e (second)

Precision
Recall
Success
Ambiguity
Runtime

Figure 4.2: Experimental results with different T .

4.3.2 Different T

In this section, (M,N) = (20.0, 10) are fixed, and two attackers are randomly

chosen among all agents αi, where Di = 2. We set the number of maximum round

T = {5, 10, 25, 50, 100}. Figure 4.2 compares the results of the two approaches

and the baseline with different T . We can observe that in all three approaches,

the more rounds the system runs, the higher the recall scores and success rates

are. However, there is a trade-off between solving times and the score of results.

The destructive approach requires the least solving times among all settings. The

baseline approach consumes the longest average solving times when T = 5 and

T = 10, and a possible reason is that doing a brute force search in the baseline

approach is more time-consuming than solving a complicated SMT problem T times

in the constructive approach when T is relatively small. Differences between the two

proposed approaches’ results are the trend of precision score and ambiguity score.

On one hand, the constructive approach receives higher precision and ambiguity

scores when T is greater. On the other hand, those two scores drop when raising T

in the destructive one. We will also give explanations pertaining to this scenario in

Section 4.4.

34

0.00

0.25

0.50

0.75

1.00

Sc
or

e

M = 10, N = 5

0

10

20

30

40

0.00

0.25

0.50

0.75

1.00
M = 10, N = 10

0

10

20

30

40

0.00

0.25

0.50

0.75

1.00
M = 20, N = 10

0

10

20

30

40

R
untim

e (second)

Baseline Constructive Destructive
0.00

0.25

0.50

0.75

1.00

Sc
or

e

M = 10, N = 20

0

10

20

30

40

Baseline Constructive Destructive
0.00

0.25

0.50

0.75

1.00
M = 20, N = 20

0

10

20

30

40

R
untim

e (second)

Precision
Recall
Success
Ambiguity
Runtime

Figure 4.3: Experimental results with different (M,N).

4.3.3 Different M and N

In this section, T = 25 are fixed, and two attackers are randomly chosen

among all agents αi, where Di = 2. We set (M,N) = {(20, 10), (10, 5), (20, 20),

(10, 10), (10, 20)}, with the aim of finding the relation between map size M , agent

count N , and the performance. Figure 4.3 shows the results of the two approaches

and the baseline with different (M,N). One can notice that the main factor which

affects the solving time and scores is N . When fixing M , i.e., fixing the map

size, the more agents on the map, the higher scores it gets. A plausible reason

is that having more agents on the map implies having more constraints to be put

into the SMT solver. The more constraints to be satisfied at the same time, the

higher opportunity to reveal the attackers, but it will also cost the SMT solver

more time to determine satisfiability. Conversely, when fixing N , the change in

solving times and performance scores are relatively small. The baseline approach

suffers relatively long solving times when N = 20, since it uses brute force search

when meeting unsatisfiability during the system flow. In contrast, the destructive

approach’s solving times don’t rise much when N goes greater, and the reason is

that it removes constraints from the SMT solver after finding potential attackers,

which can ease the burden of the solver when N is large.

35

𝛼!

𝛼"

𝛼#

: Agent

: Observation

(a) (b)

𝛼$

𝛼%

𝛼!

𝛼"

𝛼#

𝛼$

𝛼%

N

Figure 4.4: An example illustrates a map with 5 agents, where α0 is the only attacker.
An arrow between two agents indicates that those agents observe each other. (a)
The real positions of all agents. (b) The broadcast positions of all agents.

4.4 Discussion

We first illustrate why the precision and ambiguity scores are mainly between

60% and 80%, rather than the deep-learning-based methods whose scores usually

exceed 90%. Figure 4.4 is an example with five agents on the map, and an arrow

indicates an observation between those two agents. Figure 4.4(a) and (b) show

the real and the broadcast positions of all agents, respectively. In this example,

α0 is the only attacker that broadcasts incorrect position. Three observations are

made between (α0, α1), (α2, α3), and (α2, α4). To be more precise, we have the

observation functions F0,east = [1] and F1,west = [0]. The SMT solver finds the

constraints unsatisfiable. The reason is that based on the position broadcast by

each agent, there should be no observation between α0 and α1, which violates the

observations made by these two agents. Whatever proposed approach we apply,

after removing (ignoring) all constraints related to either α0 or α1, the remaining

constraints will be satisfiable, and the result set of potential attackers A = {[0], [1]}.

36

0 20 40 60 80 100
Round

200

400

600

800

1000

1200

Nu
m

be
r o

f C
on

st
ra

in
ts

#Constraint vs Round
Baseline
Constrctive
Destructive

0 20 40 60 80 100
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ru
nt

im
e

(s
ec

on
d)

SMT Solver Runtime vs Round
Baseline
Constrctive
Destructive

(a) (b)

Figure 4.5: A result when two attackers exist and (M,N, T, oa) = (20, 10, 100, 2).
(a) Number of constraints in the SMT solver in each round. (b) Solving time in
each round. The lines for the baseline and destructive approaches overlap in (a) and
(b). The difference between these approaches lies in identifying potential attackers
after the SMT solver returns unsatisfiability.

According to the evaluation metrics introduced in Section 4.1.5, the recall score in

the example is 100%, while the precision and ambiguity scores are both 50%. We

can see that the potential attackers usually lie in one of two (or even one of three)

agents, and we cannot further narrow it down since the observations are not plenty.

We can notice that the solving times of the destructive approach are less than

those of the constructive one. The reason for this is the number of constraints in the

SMT solver (Figure 4.5(a)). When the constructive approach meets unsatisfiability,

it adjusts the upper bound of the number of true relaxation variables, and no con-

straints are removed. In contrast, when the destructive one meets unsatisfiability, it

attempts to identify the attackers causing the error and ignores all the constraints

related to those potential attackers in the following rounds. Therefore, the removal

of the constraints in the destructive approach eases the burden on the SMT solver.

Next, we can see that the standard deviations of the solving times in the

constructive approach are greater than those in the destructive one. One potential

37

cause for this is the solving time in each round (Figure 4.5(b)). Compared to the de-

structive one, the solving times in the constructive approach throughout each round

is more fluctuate, resulting in a larger amount of variability and diversity among

the total solving times. This is because the constraints put into the SMT solver in

the constructive approach are more complicated, as mentioned in Section 3.2. In

contrast, the solving times in the destructive approach throughout each round are

almost linear, and thus the variability of the solving times is relatively low.

Last, the recall scores and success rates are similar in both proposed ap-

proaches across all experiments. However, the constructive approach outperforms

the destructive one in terms of precision and ambiguity scores. This results from

the “cautiousness” of the constructive approach. When encountering unsatisfiabil-

ity, unlike the destructive approach that removes all constraints related to the agents

which can cause mistakes, the constructive approach only adjusts the upper bound

of the attackers. As a result, the constructive one is able to preserve all constraints

until the final round and generate the potential attacker list A. Because of tak-

ing all constraints into consideration at the same time, the constructive approach

is capable of outputting A more precisely, as well as enhancing ambiguity scores.

On the other hand, the destructive approach may add a certain number of agents,

including innocent good agents typically, into A. Those agents lose their opportu-

nity to prove their innocence in the following rounds, hence reducing precision and

ambiguity scores. This also explains the relationship between the number of maxi-

mum round T and the performance. With a greater T , the constructive approach

is allowed to collect more constraints and make the result more precise. On the flip

side, in the destructive approach, a higher value of T may increase the likelihood of

finding additional attackers, but it can also result in increased combinations in A,

leading to lower precision and ambiguity scores.

Chapter 5

Conclusions

In this thesis, we targeted cooperative positioning for connected multi-agent sys-

tems. We considered positioning errors and that attackers intentionally provide

false information. We designed SMT-based approaches, constructive and destruc-

tive, aiming to reach a positioning between agents and find potential attackers. The

experimental results showed that by leveraging the SMT solver, the accuracies and

runtimes can be improved by using the constructive and destructive approaches,

respectively, compared to the baseline approach.

There are a few directions for future work. First, we can achieve better per-

formance by adopting more constraints, but redundant constraints can also burden

the SMT solver. For this reason, the minimization of additional information is cru-

cial. Second, after the system notices the existence of the attackers, it is important

to discover their real positions on the map immediately. The uncertainty of the

attackers’ positions can harm the other agents’ safety, and therefore designing effi-

cient methods to localize them is critical. Furthermore, we would like to consider

the problem with moving agents involved. The real positions of all agents, includ-

ing attackers, change over time, and we will need to reformulate the constraints

regarding the relations between broadcast positions in different timestamps.

38

Bibliography

[1] F. G. Abdulkadhim, Z. Yi, C. Tang, A. N. Onaizah, and B. Ahmed, “Design

and development of a hybrid (SDN + SOM) approach for enhancing security

in VANET,” Applied Nanoscience, vol. 13, no. 1, pp. 799–810, 2023.

[2] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping

(SLAM): Part II,” IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp.

108–117, 2006.

[3] T. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial patch,”

arXiv preprint arXiv:1712.09665, 2017.

[4] Y. Cai and Y. Shen, “An integrated localization and control framework for

multi-agent formation,” IEEE Transactions on Signal Processing, vol. 67, no. 7,

pp. 1941–1956, 2019.

[5] D. Droeschel and S. Behnke, “Efficient continuous-time SLAM for 3D lidar-

based online mapping,” in IEEE International Conference on Robotics and

Automation (ICRA), pp. 5000–5007. IEEE, 2018.

[6] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, “Visual si-

multaneous localization and mapping: a survey,” Artificial Intelligence Review,

vol. 43, no. 1, pp. 55–81, 2015.

[7] M. Gario and A. Micheli, “PySMT: a solver-agnostic library for fast prototyping

of SMT-based algorithms,” in SMT Workshop 2015, 2015.

39

40

[8] S. Gezici, Z. Tian, G. Biannakis, H. Kobayashi, A. Molisch, V. Poor, and

Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning

aspects for future sensor networks,” IEEE Signal Processing Magazine, vol. 22,

no. 4, pp. 70–84, 2005.

[9] Z. Hong, Y. Petillot, and S. Wang, “Radarslam: Radar based large-scale slam

in all weathers,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 5164–5170. IEEE, 2020.

[10] S.-T. Hou, “Cooperative and secure multi-agent positioning based on satisfia-

bility modulo theories,” Master’s thesis, National Taiwan University, 2021.

[11] M. H. Ikram, S. Khaliq, M. L. Anjum, andW. Hussain, “Perceptual aliasing++:

Adversarial attack for visual SLAM front-end and back-end,” IEEE Robotics

and Automation Letters, vol. 7, no. 2, pp. 4670–4677, 2022.

[12] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and

T. Weil, “Vehicular networking: A survey and tutorial on requirements, archi-

tectures, challenges, standards and solutions,” IEEE Communications Surveys

& Tutorials, vol. 13, no. 4, pp. 584–616, 2011.

[13] M. Karrer, P. Schmuck, and M. Chli, “CVI-SLAM—collaborative visual-inertial

SLAM,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 2762–2769,

2018.

[14] R. Kaur, T. P. Singh, and V. Khajuria, “Security issues in vehicular ad-hoc

network (VANET),” in International Conference on Trends in Electronics and

Informatics (ICOEI), pp. 884–889, 2018.

41

[15] S.-H. Kong and S.-Y. Jun, “Cooperative positioning technique with decentral-

ized malicious vehicle detection,” IEEE Transactions on Intelligent Transporta-

tion Systems, vol. 19, no. 3, pp. 826–838, 2018.

[16] M. Lee and T. Atkison, “Vanet applications: Past, present, and future,” Ve-

hicular Communications, vol. 28, p. 100310, 2021.

[17] S. Liu, D. He, Y. Xu, C. Zhang, S. Sun, and D. Ru, “Adaptive vehicle coopera-

tive positioning system with uncertain GPS visibility and neural network-based

improved approach,” in IEEE/CIC International Conference on Communica-

tions in China (ICCC Workshops), pp. 303–308, 2018.

[18] M. J. N. Mahi, S. Chaki, S. Ahmed, M. Biswas, S. Kaiser, M. S. Islam,

M. Sookhak, A. Barros, and M. Whaiduzzaman, “A review on VANET re-

search: Perspective of recent emerging technologies,” IEEE Access, 2022.

[19] J. Marques-Silva and I. Lynce, “On improving MUS extraction algorithms,” in

Theory and Applications of Satisfiability Testing-SAT 2011: 14th International

Conference, SAT 2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceedings

14, pp. 159–173. Springer, 2011.

[20] F. Meyer, O. Hlinka, H. Wymeersch, E. Riegler, and F. Hlawatsch, “Distributed

localization and tracking of mobile networks including noncooperative objects,”

IEEE Transactions on Signal and Information Processing over Networks, vol. 2,

no. 1, pp. 57–71, 2016.

[21] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a versatile and

accurate monocular SLAM system,” IEEE Transactions on Robotics, vol. 31,

no. 5, pp. 1147–1163, 2015.

42

[22] N. Patwari, J. Ash, S. Kyperountas, A. H. III, R. Moses, and N. Correal, “Lo-

cating the nodes: cooperative localization in wireless sensor networks,” IEEE

Signal Processing Magazine, vol. 22, no. 4, pp. 54–69, 2005.

[23] M. Poongodi, M. Hamdi, A. Sharma, M. Ma, and P. K. Singh, “DDoS detec-

tion mechanism using trust-based evaluation system in VANET,” IEEE Access,

vol. 7, pp. 183 532–183 544, 2019.

[24] D. Ramphull, A. Mungur, S. Armoogum, and S. Pudaruth, “A review of mobile

ad hoc network (MANET) protocols and their applications,” in 2021 5th in-

ternational conference on intelligent computing and control systems (ICICCS),

pp. 204–211. IEEE, 2021.

[25] L. Riazuelo, J. Civera, and J. M. Montiel, “C2TAM: A cloud framework for

cooperative tracking and mapping,” Robotics and Autonomous Systems, vol. 62,

no. 4, pp. 401–413, 2014.

[26] F. Safari, S. Izabela, H. Kunze, and D. Gillis, “‘the diverse technology of

MANETs: A survey of applications and challenges,” International Journal of

Future Computer and Communication, vol. 12, no. 2, 2023.

[27] P. Schmuck and M. Chli, “CCM-SLAM: Robust and efficient centralized collab-

orative monocular simultaneous localization and mapping for robotic teams,”

Journal of Field Robotics, vol. 36, no. 4, pp. 763–781, 2019.

[28] K. N. Tripathi, S. C. Sharma, and A. M. Yadav, “Analysis of various trust

based security algorithm for the vehicular AD-HOC network,” in International

Conference on Recent Innovations in Electrical, Electronics Communication

Engineering (ICRIEECE), pp. 1546–1551, 2018.

43

[29] P. Tyagi and D. Dembla, “Investigating the security threats in vehicular ad

hoc networks (VANETs): Towards security engineering for safer on-road trans-

portation,” in International Conference on Advances in Computing, Commu-

nications and Informatics (ICACCI), pp. 2084–2090, 2014.

[30] M. Weber, B. Jin, G. Lederman, Y. Shoukry, E. A. Lee, S. Seshia, and

A. Sangiovanni-Vincentelli, “Gordian: Formal reasoning-based outlier detec-

tion for secure localization,” ACM Transactions on Cyber-Physical Systems,

vol. 4, no. 4, pp. 1–27, 2020.

[31] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless

networks,” Proceedings of the IEEE, vol. 97, no. 2, pp. 427–450, 2009.

[32] B. Yu, C.-Z. Xu, and B. Xiao, “Detecting sybil attacks in VANETs,” Journal

of Parallel and Distributed Computing, vol. 73, no. 6, pp. 746–756, 2013.

[33] D. Zou and P. Tan, “CoSLAM: Collaborative visual SLAM in dynamic envi-

ronments,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 35, no. 2, pp. 354–366, 2012.

Appendix

The results (Table 5.1, Table 5.2, and Table 5.3) are presented with the

mean solving time (Mean) and the standard deviation (STD) in seconds, while the

precision score (PRE), the recall score (REC), the success rate (SUC), and the

ambiguity score (AMB) are presented using percentages.

Table 5.1: Experimental results with different numbers of attackers and different
numbers of observers Da (Mean & STD in seconds; the others in percentages).

Number of Attackers 1 2 3

Number of Observers 0 1 2 0 1 2 0 1 2

Mean 1.88 1.45 1.52 2.31 1.95 2.26 2.25 3.10 4.09
STD 0.84 0.39 0.27 0.90 0.39 0.44 0.90 1.30 1.32

Baseline PRE 44.4 57.3 85.4 47.8 59.9 80.0 48.8 57.6 70.8
REC 60.0 94.0 98.0 56.5 90.5 96.5 50.3 87.0 93.7
SUC 60.0 94.0 98.0 31.0 74.0 91.0 5.0 47.0 74.0
AMB 44.4 57.3 85.4 23.4 35.2 69.4 12.7 20.2 42.7

Mean 4.03 2.98 2.86 4.60 3.25 2.97 4.98 3.10 3.19
STD 1.55 0.88 0.50 1.68 1.06 0.72 2.01 0.87 0.75

Constructive PRE 62.5 75.4 94.4 61.4 71.5 88.4 63.4 63.1 78.8
REC 60.0 94.0 98.0 56.5 92.0 96.0 49.0 84.0 93.0
SUC 60.0 94.0 98.0 33.0 78.0 91.0 12.0 55.0 79.0
AMB 62.1 75.4 94.4 43.4 53.7 82.6 18.2 29.8 56.2

Mean 1.61 1.23 1.24 1.73 1.16 1.18 1.73 1.06 1.19
STD 0.63 0.32 0.23 0.59 0.30 0.22 0.62 0.19 0.31

Destructive PRE 40.5 52.5 67.9 40.0 56.3 67.0 40.4 56.2 65.0
REC 60.0 94.0 98.0 56.5 91.0 97.0 48.7 87.7 94.0
SUC 60.0 94.0 98.0 30.0 74.0 87.0 4.0 47.0 70.0
AMB 40.5 52.5 67.9 19.3 30.6 48.2 9.9 17.6 30.4

44

Table 5.2: Experimental results with different T
(Mean & STD in seconds; the others in percentages).

System Maximum Round (T)
Flow 5 10 25 50 100

Mean 1.32 1.52 2.26 4.26 11.96
STD 0.48 0.47 0.44 0.84 3.05

Baseline PRE 83.1 82.1 80.0 79.4 79.4
REC 92.5 94.0 96.5 97.5 98.0
SUC 83.0 86.0 91.0 93.0 94.0
AMB 71.8 71.1 69.4 69.2 68.8

Mean 0.45 0.91 2.97 8.09 26.13
STD 0.07 0.19 0.72 1.82 8.42

Constructive PRE 85.9 86.9 88.4 88.1 89.6
REC 92.5 94.0 96.0 97.0 97.5
SUC 83.0 86.0 91.0 93.0 95.0
AMB 76.6 78.7 82.6 82.7 84.6

Mean 0.34 0.50 1.18 2.93 9.59
STD 0.05 0.08 0.22 0.63 2.27

Destructive PRE 69.0 68.2 67.0 66.1 66.3
REC 94.0 95.5 97.0 98.0 98.5
SUC 81.0 84.0 87.0 89.0 90.0
AMB 48.8 48.0 48.2 47.1 46.9

45

Table 5.3: Experimental results with different M and N
(Mean & STD in seconds; the others in percentages).

System (M,N)
Flow (10,5) (10,10) (20,10) (10,20) (20,20)

Mean 0.55 2.21 2.26 24.62 27.56
STD 0.10 0.47 0.44 11.02 11.84

Baseline PRE 71.1 78.9 80.0 86.7 86.0
REC 92.5 96.0 96.5 99.5 100.0
SUC 73.0 92.0 91.0 99.0 100.0
AMB 44.4 69.5 69.4 82.4 80.2

Mean 0.87 2.92 2.97 13.61 16.67
STD 0.16 0.67 0.72 2.50 4.10

Constructive PRE 72.6 90.7 88.4 96.9 96.3
REC 89.5 96.0 96.0 99.5 100.0
SUC 76.0 92.0 91.0 99.0 100.0
AMB 50.7 86.1 82.6 95.7 94.3

Mean 0.53 1.18 1.18 3.58 3.37
STD 0.12 0.26 0.22 0.60 0.68

Destructive PRE 68.6 63.7 67.0 64.8 70.1
REC 94.0 96.0 97.0 99.5 100.0
SUC 67.0 87.0 87.0 98.0 100.0
AMB 35.3 44.7 48.2 50.2 56.4

46

	Acceptance Certificate
	Acknowledgements
	Abstract (Chinese)
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Related Work
	Global Positioning System (GPS)
	Non-Satellite Based Positioning
	Cooperative Positioning
	Simultaneous Localization and Mapping (SLAM)
	Vehicular Networking and Its Security
	Mobile Ad-hoc Networks (MANETs)
	Vehicular Ad-hoc Networks (VANETs)

	Background: Satisfiability Modulo Theories
	Contributions
	Thesis Organization

	Chapter 2. System Model and Problem Formulation
	Elements
	Positioning
	Observation
	Attacking Strategies
	SMT Formulation

	Chapter 3. Proposed Approaches
	Broadcast Protocols
	System Flow
	Constructive Approach
	Destructive Approach

	Chapter 4. Experimental Results
	Experimental Setting
	Basic Setting
	Broadcast Positions Sampling
	Attacker Generation
	Baseline Approach
	Evaluation Metrics

	Experiments without Attackers
	Experiments with Attackers
	Different Number of Attackers and Different Lg
	Different Lg
	Different Lg and Lg

	Discussion

	Chapter 5. Conclusions
	Bibliography
	Appendix

